Normal view MARC view ISBD view

QSAR, Pharmacophore Mapping and Molecular Docking of 2,4-Diaminoquinazoline as Antitubercular Scaffold: A Computational Hybrid Approach

By: Bose, Priyanka.
Contributor(s): Mishra, Mitali.
Publisher: Mumbai Indian Journal of Pharmaceutical Science 2019Edition: Vol.81(6), Nov-Dec.Description: 1078-1088p.Subject(s): PHARMACEUTICSOnline resources: Click here In: Indian journal of pharmaceutical sciencesSummary: The 2,4-diaminoquinazoline is a well-known scaffold with a great potential to generate a library. In the following research work different computational strategies were applied on 2,4-diaminoquinazoline moiety to estimate its efficiency as an antitubercular scaffold among its other versatile biological activities reported in several published studies. Each data has defined specific substitution mode on the scaffold to be active on different protein site or for disease condition. The following experiment regards of 2D-QSAR, 3D-QSAR, active site and blind docking, structural orientation, pharmacophore mapping and further designing of the data set with possible real active moiety. 2D-QSAR has shown good reliability with r2 = 0.8190, q2_LOO = 0.7711 and external pred_r2 = 0.5321, along with 3D-QSAR has good predictability, q2 (r2cv) = 0.7601, pred_r2 = 0.5567. Further ligand based pharmacophore mapping was carried out for estimating atomic contribution to chemical feature for the compound. The generated hypothesis established that hydrogen accepter, donor and aromatic ring with electronegative atom are the important features. Finally, outcomes of all results were recapitulated to design new compounds. Some compounds also were designed depending on the computational finding and concludes the suitability of the scaffold to be antiTB active.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2020-2021153
Total holds: 0

The 2,4-diaminoquinazoline is a well-known scaffold with a great potential to generate a library. In the following research work different computational strategies were applied on 2,4-diaminoquinazoline moiety to estimate its efficiency as an antitubercular scaffold among its other versatile biological activities reported in several published studies. Each data has defined specific substitution mode on the scaffold to be active on different protein site or for disease condition. The following experiment regards of 2D-QSAR, 3D-QSAR, active site and blind docking, structural orientation, pharmacophore mapping and further designing of the data set with possible real active moiety. 2D-QSAR has shown good reliability with r2 = 0.8190, q2_LOO = 0.7711 and external pred_r2 = 0.5321, along with 3D-QSAR has good predictability, q2 (r2cv) = 0.7601, pred_r2 = 0.5567. Further ligand based pharmacophore mapping was carried out for estimating atomic contribution to chemical feature for the compound. The generated hypothesis established that hydrogen accepter, donor and aromatic ring with electronegative atom are the important features. Finally, outcomes of all results were recapitulated to design new compounds. Some compounds also were designed depending on the computational finding and concludes the suitability of the scaffold to be antiTB active.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha